Mid-term Test SOLID MECHANICS (NASM) October 1, 2024, 11:00-11:45 h

NB This is a *closed-book* exam. It comprises four problems, for which one can obtain the following points:

Question	# points
1	2
2	3
3	2
4	1+1=2

The number of points is indicated next to each subquestion inside a rectangular box in the right-hand margin on the next pages.

The mid-term grade is calculated as 9 * (# points)/9 + 1 and contributes 30% to the final grade.

Question 1 Prove that the outcome of the quadratic product $x \cdot A \cdot x$ for an arbitrary vector x is independent of the skew-symmetric part of the tensor A.

Question 2 In two dimensions, let the components of the deformation gradient tensor be specified by the matrix

$$[F_{ij}] = \begin{bmatrix} 1 & 0 \\ \gamma & 1 \end{bmatrix}.$$

a. Show that the corresponding components of the strain tensor in the geometrically linear theory are given by

$$\begin{bmatrix} \varepsilon_{ij} \end{bmatrix} = \begin{bmatrix} 0 & \gamma/2 \\ \gamma/2 & 0 \end{bmatrix}$$

b. Is the inverse also correct? In other words: given these strain components, does this imply that the deformation gradient is as specified above? Explain your answer.

Question 3 Consider a flat interface between two dissimilar materials in a loaded composite material. When the system is in equilibrium, which components of the stress tensor $\boldsymbol{\sigma}$ in three dimensions are continuous across this interface (with unit normal $\boldsymbol{n} = \boldsymbol{e}_2$)?

Question 4 Consider a planar strain state characterized by principal strains ε_1 and ε_2 with respect to the basis $\{e_1, e_2\}$; that is,

$$[\mathbf{\varepsilon}_{ij}] = \begin{bmatrix} \mathbf{\varepsilon}_1 & 0 \\ 0 & \mathbf{\varepsilon}_2 \end{bmatrix}.$$

When viewed from the vantage point of a basis $\{e_a^*\}$ (a = 1, 2) that is rotated over an angle θ in the plane, the strain components ε_{ab}^* will no longer be principal strains and shear strain components will emerge.

- a. At what value of θ will the shear strain component ε_{12}^* be maximal?
- b. What is the normal strain component at this particular orientation?

2

2

1

|2|

|2|

Solutions Mid-term Test SOLID MECHANICS (NASM) October 1, 2024, 11:00-11:45 h

Question 1

Alternatively:

- a. Recognize that $\mathbf{x} \cdot \mathbf{A} \cdot \mathbf{x} = \mathbf{A}$: $(\mathbf{x} \otimes \mathbf{x})$, with $\mathbf{x} \otimes \mathbf{x}$ a symmetric second-order tensor; followed by recalling that the scalar product of a symmetric and a skewsymmetric tensor vanishes.
- b. Introduce symmetric and skew-symmetric parts S and W, respectively, and expand:

$$\boldsymbol{x} \cdot \boldsymbol{A} \cdot \boldsymbol{x} = \boldsymbol{x} \cdot \boldsymbol{S} \cdot \boldsymbol{x} + \boldsymbol{x} \cdot \boldsymbol{W} \cdot \boldsymbol{x};$$

exploit the skewsymmetry of W to derive

$$\boldsymbol{x} \cdot \boldsymbol{W} \cdot \boldsymbol{x} = x_i W_{ij} x_j = -x_i W_{ji} x_j = -x_j W_{ij} x_i = -x_i W_{ij} x_j = -\boldsymbol{x} \cdot \boldsymbol{W} \cdot \boldsymbol{x} = 0.$$

Question 2

- a. Since $F_{ij} = \delta_{ij} + u_{i,j}$, the only-nonzero component of the displacement gradient is $u_{2,1} = \gamma$. Substitution into $\varepsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i})$ yields the specified strain components.
- b. No, the inverse is not correct, since there are many displacement gradients that satisfy $\frac{1}{2}(u_{1,2}+u_{2,1}) = \gamma/2$. More specifically, there are many rotations $\omega_{ij} = \frac{1}{2}(u_{i,j}-u_{j,i})$ that can be added to the given state of strain ε_{ij} in order to arrive at the displacement gradient. The one given in the question corresponds to a particular rotation: $\omega_{12} = -\gamma/2$.

Question 3

It is the traction across the interface that needs to be continuous, as a consequence of Newton's third law (action = -reaction). Since

$$\boldsymbol{t} = \boldsymbol{\sigma} \cdot \boldsymbol{n} = \sigma_{i2} \boldsymbol{e}_i,$$

the components $\{\sigma_{12}, \sigma_{22}, \sigma_{23}\}$ are continuous (note that the normal stresses parallel to the interface, i.e. σ_{11} and σ_{33} can change discontinuously)

Question 4

This question is most easily answered with reference to the elementary Mohr's circle, but also through the transformation formulas.

- a. When $2\theta = 90^{\circ}$, hence $\theta = 45^{\circ}$.
- b. $\frac{1}{2}(\varepsilon_1 + \varepsilon_2)$

1

1

1

1

1

2

1

1

1

1